Molecular identity, ontogeny, and cAMP modulation of the hyperpolarization-activated current in vestibular ganglion neurons.

نویسندگان

  • Angélica Almanza
  • Enoch Luis
  • Francisco Mercado
  • Rosario Vega
  • Enrique Soto
چکیده

Properties, developmental regulation, and cAMP modulation of the hyperpolarization-activated current (I(h)) were investigated by the whole cell patch-clamp technique in vestibular ganglion neurons of the rat at two postnatal stages (P7-10 and P25-28). In addition, by RT-PCR and immunohistochemistry the identity and distribution of hyperpolarization-activated and cyclic nucleotide-gated channel (HCN) isoforms that generate I(h) were investigated. I(h) current density was larger in P25-28 than P7-10 rats, increasing 410% for small cells (<30 pF) and 200% for larger cells (>30 pF). The half-maximum activation voltage (V(1/2)) of I(h) was -102 mV in P7-10 rats and in P25-28 rats shifted 7 mV toward positive voltages. At both ages, intracellular cAMP increased I(h) current density, decreased its activation time constant (τ), and resulted in a rightward shift of V(1/2) by 9 mV. Perfusion of 8-BrcAMP increased I(h) amplitude and speed up its activation kinetics. I(h) was blocked by Cs(+), zatebradine, and ZD7288. As expected, these drugs also reduced the voltage sag caused with hyperpolarizing pulses and prevented the postpulse action potential generation without changes in the resting potential. RT-PCR analysis showed that HCN1 and HCN2 subunits were predominantly amplified in vestibular ganglia and end organs and HCN3 and HCN4 to a lesser extent. Immunohistochemistry showed that the four HCN subunits were differentially expressed (HCN1 > HCN2 > HCN3 ≥ HCN4) in ganglion slices and in cultured neurons at both P7-10 and P25-28 stages. Developmental changes shifted V(1/2) of I(h) closer to the resting membrane potential, increasing its functional role. Modulation of I(h) by cAMP-mediated signaling pathway constitutes a potentially relevant control mechanism for the modulation of afferent neuron discharge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular identity , ontogeny , and cAMP modulation of the hyperpolarization - activated 1 current in vestibular ganglion neurons

1 current in vestibular ganglion neurons. 12 AA and EL made the electrophysiological recordings. FM made the PCR analysis. ES 13 and RV did the immunohistochemical experiments. Abstract 29 Properties, developmental regulation and cAMP modulation of the hyperpolarization

متن کامل

Identification and modelling of fast and slow Ih current components in vestibular ganglion neurons.

Previous experimental data indicates the hyperpolarization-activated cation (Ih) current, in the inner ear, consists of two components [different hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits] which are impossible to pharmacologically isolate. To confirm the presence of these two components in vestibular ganglion neurons we have applied a parameter identification algorithm ...

متن کامل

Mechanotransduction and hyperpolarization-activated currents contribute to spontaneous activity in mouse vestibular ganglion neurons

The hyperpolarization-activated, cyclic nucleotide-sensitive current, Ih, is present in vestibular hair cells and vestibular ganglion neurons, and is required for normal balance function. We sought to identify the molecular correlates and functional relevance of Ih in vestibular ganglion neurons. Ih is carried by channels consisting of homo- or heteromeric assemblies of four protein subunits fr...

متن کامل

Expression of a functional hyperpolarization-activated current (Ih) in the mouse nucleus reticularis thalami.

The GABAergic neurons of the nucleus reticularis thalami (nRT) express the type 2 hyperpolarization-activated cAMP-sensitive (HCN2) subunit mRNA, but surprisingly, they were reported to lack the hyperpolarization-activated (Ih) current carried by this subunit. Using the voltage-clamp recordings in the thalamocortical slice preparation of the newborn and juvenile mice (P6-P23), we demonstrate th...

متن کامل

Antagonistic modulation of a hyperpolarization-activated Cl(-) current in Aplysia sensory neurons by SCP(B) and FMRFamide.

Whole cell voltage-clamp recordings from Aplysia mechanosensory neurons obtained from the pleural ganglion were used to investigate the actions on membrane currents of the neuropeptides SCP(B) and FMRFamide. At the start of whole cell recording, SCP(B) typically evoked an inward current at a holding potential of -40 mV, due to the cAMP-mediated closure of the S-type K+ channel, whereas FMRFamid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 8  شماره 

صفحات  -

تاریخ انتشار 2012